Heteroepitaxy and Nanostructures

Head of the group:

Alexandre DANESCU

As part of the « More than Moore » evolution, the H&N team faces the challenge of monolithic integration, especially on silicon, of two families of materials: III-V semiconductors and functional oxides for photonics, nanoelectronics and energy harvesting.


The diversification of the functionalities and therefore of the functional materials integrated on silicon is a key point for further development of electronic devices and associated technologies (“More than Moore”). In this context, defining new solutions to integrate functional materials on silicon is a crucial issue.

To overcome the limitations of conventional epitaxy related to the heterogeneity between a material and its substrate, we explore two routes to achieve this monolithic integration. The first one consists in implementing interface engineering strategies to grow, by epitaxy, thin oxide layers on silicon and III-V substrates. The second one consists in limiting the interaction surface between these materials and the substrate by developing the growth of heterostructured  III-V semiconductor nanowires and hybride III-V semiconductors – oxides nanowires on silicon.


We are addressing the complete chain from basic material research to the development of demonstrator devices, with the support of the relevant INL teams and in the framework of a dense collaborative network.


Our activity is sub-divided into five research axes:

  • Epitaxial integration of functional oxides with semiconductors
  • Nanowires for integration on silicon
  • Functional oxides : emerging devices
  • Characterization and modeling of heterogeneous systems
  • Epitaxy Pole : III-V heterostructures and nanostructures


Determination of the spin-orbit coupling and crystal-field splitting in wurtzite InP by polarization resolved photoluminescence

La “maîtrise du ballon de football” … à l’échelle microscopique

Functional spinel oxide heterostructures on silicon

Energy Efficient Embedded Non-Volatile Memory & Logic Based on Ferroelectric Hf(Zr)O2

Towards new devices on Si thanks to a combination of physical and chemical deposition techniques

10 ans de l’INL – On en parle

Huge gain in pyroelectric energy conversion through epitaxy for integrated self-powered nanodevices

Vers l’intégration d’oxydes fonctionnels sur nanofils semiconducteurs par épitaxie par jets moléculaires

Systèmes PZT//SrTiO3 : Large effet du désaccord d’expansion thermique entre couche mince épitaxiée et substrat

Préparation de couches minces macroporeuses de quartz épitaxiées sur silicium par dépôt de solutions chimiques

Transistors à effet de champ à canal Graphène

Nanofils coeur/coquille à base de semiconducteur et d’oxyde

Crystallization of hollow mesoporous silica nanoparticles

Croissance et ferroélectricité de BaTiO3 épitaxié sur Si

Nanofils InP contraints par le substrat

Nouveau mécanisme de relaxation plastique dans les systèmes épitaxiaux faiblement liés

Epitaxie de Ferroelectrique Pb(Zr,Ti)O3 sur GaAs

Au comme catalyseur dans la formation de SiO2

Croissance VLS-MBE auto-catalysée de nanofils d’InP sur silicium

Nanofils III-V sur Si émettant aux longueurs d’onde télécom