Functional oxides/semiconductors integration using epitaxy

Functional oxides present a wide range of properties (superconductivity, piezoelectricity, ferroelectricity, pyroelectricity, ferromagnetism, multiferroics, thermoelectricity, ultra-high electro-optic coefficients,…) and are thus very promising for various applications. These materials are mostly studied as thin layers deposited on oxide substrates by pulsed laser deposition or sputtering, to address applications mostly focused around nanoelectronics and spintronics. The originality of our approach relies on the use of molecular beam epitaxy for the synthesis of these materials. This technique, less mature than pulsed laser deposition or sputtering, offers unrivalled flexibility to control oxide growth (complex solid solutions, heterostructures, superlattices, doping, interface engineering). Our aim is to exploit this flexibility on the one hand to develop new oxides-based nanomaterials having enhanced or novel properties, and on the other hand to integrate by epitaxy functional oxides on semiconductor platforms (Si, Ge, III-V).  Our state of the art know-how in this strategic area is quite unique at the international level and strongly demanded. In the end, the originality of our approach also relies on the targeted applications, namely oxides-based integrated devices for energy harvesting and advanced photonics, while most or our competitors address issues related to spintronics or nanoelectronics.

 

Responsibles: R. Bachelet and G. Saint-Girons

 

Contributors : R. Bachelet, C. Botella, A. Danescu, G. Grenet, J. Penuelas, P. Regreny, Y. Robach, G. Saint-Girons, B. Vilquin

 

Post-docs:

M. Apreutesei (2015-2017): “Nanostructured thermoelectric LSTO films by MBE”

 

PhD students :

L. Mazet (2012-2016) : “Hétérostructures à base de BaTiO3 épitaxié sur Si pour la réalisation de transistors MOS de faible consommation”

B. Meunier (2013-2016) : ” Hétérostructures épitaxiées combinant semiconducteurs III-V et oxydes ferroélectriques pour le développement de fonctionnalités optiques nouvelles intégrées sur GaAs ”

R. Moalla (2013-2016): “Epitaxial pyroelectric oxide films for thermal energy harvesting”

M. Minvieille (2013-2016) : “Elaboration et caractérisations d’hétérostructures d’oxydes à commutation résistive pour la fabrication de dispositifs memristifs”

M. Bouras (2016-2019) : ” Ingénierie des propriétés diélectriques d’oxydes pérovskites par nanostructuration jusqu’à l’échelle de la monocouche”

D. Han (2017-2020) : “p-type Sr-doped LaCrO3 thermoelectric epitaxial films”

 

Research engineer CDD :

R. Moalla (2018-2020): “Microfabrication of integrated oxides-based thermoelectric modules”

 

Research projects

– ANR-Blanc 2012 HIRIS, 2012-2015

– BQR Ecole Centrale de Lyon, 2015

– Région ARC 6 (collaboration ESRF), 2013-2016

– Région ARC 6 (collaborations SYMME, STMicroelectronics), 2014-2017

– Région ARC 4 (collaborations CEA-LETI et LGEF), 2013-2016

– Laboratoire commun INL / RIBER, 2013-2016

– Projet européen SITOGA, 2014-2017, website: http://sitoga.eu/

– Projet européen TIPS, 2015-2018, website: http://www.tips2020.eu/

– Nano 2017, 2016-2017

– ANR 2016 DIAMWAFEL, 2016-2019

– ANR 2016 LILIT, 2016-2020

– ANR 2017 MITO, 2018-2020

 

Collaborations :

CEA Iramis Saclay, CEA-LETI Grenoble, CEA LIST Saclay, EPFL, synchrotron ESRF, FEMTO ST Besançon, GEMaC Versailles, IBM Zürich (Suisse), ICMAB Barcelone (Espagne), IEF Orsay, IEMN Lille, ILM Lyon, IMEC-LAHC Grenoble, IMN Nantes, IRCELYON Villeurbanne,), LGEF Lyon, LPN Marcoussis, LSPM, Université d’Osaka (Japon), RIBER, Synchrotron SOLEIL, SPMS Ecole Centrale Paris Chatenay Malabry, STMicroelectronics, Tyndall Cork (Irlande), Tokyo University Université (Japon), UMI LN2 Sherbrooke (Canada), Valencia University (Espagne), KU Leuven (Belgique), DAS Photonics (Espagne), IHP (Allemagne).

Internal INL collaborations wiht teams Nanophotonics, Electronic Devices, Spectroscopy and Nanomaterials, Nanolyon platform.

INL CNRS
/* */ //